
Name That Enumeration!
I once almost quit the programming profession out of
frustration with translation tables. Those ancient woes
are now history, I’m glad to report, as Delphi has made
programming most compelling again. The Delphi
compiler allows you to tap into what it knew about your
interface when it compiled your app. This is known as
Run Time Type Information (RTTI) and, for one, is how
Borland was able to build Delphi using Delphi. RTTI is
also what makes it possible for the Object Inspector
and Browser to work with the same information and
methods. That’s quite a feat and why we’re here today
looking at how the Object Inspector would know about
the strings used to define Enumerated and Set types. Say
you’re translating from Boolean to text by implementing
a constant:

array BoolString[false..true] of string[5]

Whoops, keep your array. Boolean is a built in simple
type and can not be decoded via RTTI. Any other
Enumerated or Set name can be obtained as a string from
RTTI by calling TypInfo.GetEnumName as in this example:

String := GetEnumName(TypeInfo(TWindowState),
 ord(aState))^;

where this is what it all means:

String:= {text for current WindowState}
GetEnumName({returns a Pointer to a String}
TypeInfo {returns pointer to RTTI info
 for type}
(TWindowState) {this is the type we want to
 know about}
Ord {get the sequential number of
 the value}
(aState) {typed value we’re decoding}
)^; {de-reference pointer,
 get the string}

Listing 1 shows a sample unit to populate a memo with
possible form-states. That’s it. Try it on the colors. Use
a string to set a color. Perhaps next time I’ll give you
some pointers on borrowing the VCL’s writer procs to
create a simple run-time object inspector...

Contributed by Michael Ax of Ax-Systems.
© 1995 Michael/Ax-Systems.

Tips
& Tricks

Components Going PString!
You can change component fields from String to
PString types and make big savings! You can also use
the ‘third’ string type to save memory.

Pascal and even C strings are of fixed length (at least
in Delphi 1.x). You write and read them from the same
pre-allocated memory location. Enter PString, the
pointer to a string string type. It’s a bit more work but a
PString will never occupy more than 4 bytes if empty.

To use them in a component you will have to have at
least two methods, as you must prepare and destroy
the PStrings along with the component. To publish
them, every PString needs to have two additional
procedures. To access them, you must de-reference
the pointer variable to get the string, thus you need a
get procedure. To write to them, you need to use the
AssignStr procedure, which first frees any space used
previously before reserving memory for the new string.

Listings 2 and 3 show excerpts from a sample
component, before and after converting to PStrings,
respectively.

Contributed by Michael Ax of Ax-Systems.
© 1995 Michael/Ax-Systems.

unit SetNames;

interface
uses
 TypInfo, SysUtils, WinTypes, WinProcs, Messages,
 Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;
type
 TForm1 = class(TForm)
 Memo1 : TMemo;
 procedure FormCreate(Sender: TObject);
 private
 public
 end;
var
 Form1 : TForm1;

implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender : TObject);
var
 aState : TWindowState;
begin
 Memo1.Lines.Clear;
 with Memo1.Lines do
 for aState := low(TWindowState) to
high(TWindowState) do
 Add(GetEnumName(TypeInfo(TWindowState),
ord(aState))^);
end;

end.

➤ Listing 1

type
 TStringBin = class(TComponent)
 private
 fString : String;
 published
 aString : String read fString write fString;
 end;

➤ Listing 2

60 The Delphi Magazine Issue 6

OOTable
Would you like to know how to make a database field a
property? Sometimes you simply want to control a few
fields while making them read-only to the user.

In this adventure we’re going to descend a table from
TTable that is going to have a published property
representing a hypothetical UniqueID field that can be
manipulated directly via code. Take a look at the code
in Listing 4.

Contributed by Michael Ax of Ax-Systems.
© 1995 Michael/Ax-Systems.

Debugging
Have problems using the integrated debugger to see
what’s going on inside a TListbox or a TCombobox? When
I tried to look at the contents of the items, I found each
and every one gave me a string of length 0. When I did
a character dump, I found the title of the form I was
currently working on, preceded by a zero. I knew there
were other values there, since previous lines used text
from the items array, but I wasn’t getting what I
expected and I wanted to check and see what
MyListBox.items[2] actually contained.

Conditional defines to the rescue. I set up a test
stringlist and assigned the values in my Tlistbox.items
to it; now I could see them. I have no idea why Borland
set up TListboxes and descendants so that you can’t see
their contents in the watch window, but at least the
TStringlist can be seen. How to do that? In the
implementation or interface section, put the following
code fragment:

{$IFDEF buggy}
var tstlst : tstringlist;
{$ENDIF}

Then, in the FormCreate procedure, activate tstlst:

{$IFDEF buggy}
tstlst := tstringlist.create;
{$ENDIF}

type
 TPStringBin = class(TComponent)
 private
 fString : PString;
 protected
 procedure SetString(const Value : String);
 function GetString : String;
 public
 constructor Create(aOwner : TComponent); override;
 destructor Destroy; override;
 published
 aString: String read GetString write SetString;
 end;
implementation

constructor TPStringBin.Create(aOwner : TComponent);
begin
 inherited Create;
 fString := NullStr; {prepare the PString}
end;

destructor TPStringBin.Destroy;
begin
 DisposeStr(fString); {free the PString}
 inherited Destroy;
end;

procedure SetString(const Value : String);
begin
 AssignStr(fString,Value); {free old and store new}
end;

function GetString:String;
begin
 Result := fString^;
 {fString is a pointer. ’^’ points to the string}
end;

➤ Listing 3

unit OoTable;
{ We’re going to create a property that represents
 the current record’s unique id }
interface
uses db, dbtables;
type
 TTableUniqueIDField = class(TTable)
 private
 fUniqueID: TField;
 protected
 function GetUniqueID:LongInt;
 procedure SetUniqueID(aValue:LongInt);
 public
 procedure DoAfterOpen; Override;
 published
 property UniqueID: LongInt
 read GetUniqueID write SetUniqueID stored false;
 end;

{ Note: while you could make this a component you’d
 probably want to define individual components for
 every major table in the system via inheritance...
 but that gets tricky if you want tables to know
 about each other. On the other hand you can create
 new instances of tables easily if they have a type.
 You can set table names in the Create procedures so
 that you can instantiate and open them without
 knowing a table name or alias! For example, at
 least do:}

 TCustomerTable = class(TTableUniqueIDField);

{ that’s enough to get an alias type for this }

const
 cUniqueID = ’UniqueID’; { reference to field name }

implementation

procedure TTableUniqueIDField.DoAfterOpen;
begin
 inherited DoAfterOpen;
 fUniqueID := FieldByName(cUniqueId);
 {raises exception if not there}
 fUniqueID.ReadOnly := True;
 { Now the table is open and the field has been
 hooked up }
end;

procedure TTableUniqueIDField.SetUniqueID(
 aValue:LongInt);
begin
 if State <> dsInactive then
 {while the table is open}
 with fUniqueID do
 {change the property/field if needed}
 if AsInteger <> Value then begin
 ReadOnly := False; {gain access}
 AsInteger := aValue; {set}
 ReadOnly := True; {restrict access}
 end;
end;

function TTableUniqueIDField.GetUniqueID:LongInt;
begin
 if State <> dsInactive then
 {while the table is open}
 Result:=fUniqueID.AsInteger {return the property}
 else
 Result:=0;
end;
end.

➤ Listing 4

February 1996 The Delphi Magazine 61

Then, where you want to use the debugger to see
what’s happening, include:

{$IFDEF buggy}
tstlst.assign(MyListBox.items);
{$ENDIF}

And, especially during long sessions, be sure to release
the space in the FormDestroy procedure:

{$IFDEF buggy} tstlst.free; {$ENDIF}

To make it all work, the final step is to click on Options
| Project | Conditionals and enter buggy (or whatever
term you are using) in the conditional box.

Contributed by Brandon Smith
Email: synature@aol.com

Customising Forms
In Issue 4, Claus Ziegler showed some code snippets to
show and hide title bars at run-time. If you know that
you want a particular look to your form all the time, you
can take a different approach and override the form’s
CreateParams method.

CreateParams is used to set up the window style bits
used by Windows when building our form. We can take
the default bits and modify them with the window style
flags defined in the WinTypes unit. You can find the
definitions of them towards the bottom of the online
help for the CreateWindow API. Values are added in by
“or”ing them, and taken away by “and not”ing them.

As an example, Listing 5 shows code to make a form
with a border but no caption.

Based on a submission by Soenke Pries (Email:
CompuServe 100347,2040) with further illumination
provided by Brian Long

TNoteBook Page Backgrounds
I write computer assisted learning (CAL) software and
sometimes this involves using an electronic book to get
over a few pages of information to students (to prevent
death threats from the CAL community I hasten to add
this book is not the whole lesson). It has become
common practice for the pages of such books to have
a graphical background, as opposed to a flat wash of
colour.

This brings me on to the Delphi issue. The TNoteBook
is the ideal component for creating these books since
it only takes the addition of a few buttons to allow the
user to browse through the pages. Unfortunately it is
not possible to place an image onto a form and use it
as the background to a TNoteBook (perhaps Borland
could look at adding a transparent property to the
notebooks controls?).

A first attempt involved using a separate TImage com-
ponent on each page of the notebook. I assumed that
Delphi would only store the bitmap once in the EXE.

This is not so: every TImage is stored as a unique
occurrence and, as I was using a 300Kb BMP file over
five pages, this added an unnecessary 1200Kb to my
EXE file.

Several days browsing in the CompuServe Delphi
forum did not help. I found one other person with a
similar problem and the suggestions made to him did
not work. However, some of the information from
CompuServe did stick and I had one of those rare
inspirational flashes...

The solution is to place one TImage component onto
the notebook, set its alignment as required (alClient in
my case) then load in the picture. Now create a handler
for the notebook OnPageChanged event and insert the
code shown in Listing 6.

Now whenever the notebook’s page is changed the
background graphic remains constant. This method is
fast enough to go almost unnoticed on a 386/40.

Contributed by Stewart McSporran
Email: CompuServe 100753,1703

Clean Up Your Code
In most forms there are a lot of TLabel or TBevel
controls. In the unit source code these controls are also
declared, although in most cases they don’t need to be,
because you wouldn’t usually assign event handlers for
a TLabel, for example.

To avoid the declaration in your source code of a lot
of controls you don’t need, simply empty the Name
property in the Object Inspector and voila the control
is deleted in the corresponding source code but
available on the screen!

TForm1 = class(TForm)
public
 procedure CreateParams(var Params: TCreateParams);
 override;
end;

procedure TForm1.CreateParams(
 var Params: TCreateParams);
begin
 inherited CreateParams(Params);
 with Params do
 Style := Style and not
 (ws_Border or ws_ThickFrame) or ws_Popup;
end;

➤ Listing 5

procedure TForm1.NoteBook1PageChanged(Sender: TObject);
begin
 { Make the current page the parent
 of the TImage control}
 TImage1.Parent :=
 TWinControl(
 NoteBook.Pages.Objects[NoteBook.PageIndex]);
 { Ensure the image is at the back of the z order
 so that the text can be seen}
 TImage1.SendToBack;
end;

➤ Listing 6

62 The Delphi Magazine Issue 6

If you delete all the TLabel controls from the source
you may find that you get the problem that Delphi says
“TLabel isn’t registered” so in this case you must do the
registration yourself, before the form is created. To do
this, include the line:

RegisterClasses([TLabel,TBevel]);

(for example) at the start (just after begin) of the .DPR
project file will register the required components.

You can do the samething with other design-only
components such as TGroupbox – it will make your
source more readable, because only the components
you need for programming appear.

Contributed by Stefan Boether
Email: CompuServe 100023,275

Send In Those Tips Please!
If you have some useful tips accumulated from your
long hours of development (all highly enjoyable of
course!) why not share them with your fellow Delphi
developers? Just drop an email to the Editor, Chris
Frizelle, on 70630.717@compuserve.com or send us a
disk, letter or fax. Who knows, you could even
become famous!

February 1996 The Delphi Magazine 63

	Name That Enumeration!
	Components Going PString!
	OOTable
	Debugging
	Customising Forms
	TNoteBook Page Backgrounds
	Clean Up Your Code

